
Toward automated problem analysis 
of large-scale storage

Priya Narasimhan, Greg Ganger, Chuck Cranor



Greg Ganger © August 2006http://www.pdl.cmu.edu/ 2

Automated Problem Analysis

• Problem analysis is very difficult
• for administrators and debuggers alike
• ever-worsening as scale grows

• Goal: automate it and get proactive
• failure detection and prediction
• problem determination (causes and effects)

• How: instrumentation plus statistical tools



Greg Ganger © August 2006http://www.pdl.cmu.edu/ 3

• Goal: identify failed components and root cause 
• guiding repair and prevention of recurrence

• Very challenging in large-scale environment
• can have multiple manifestations with a single cause
• can have multiple causes for a single manifestation
• problems and/or their manifestations can “travel”

among communicating components
• … and might just be workload change

Problem determination is very difficult



Greg Ganger © August 2006http://www.pdl.cmu.edu/ 4

A bit more on approach

• Collect and orchestrate instrumentation
• explicitly reported “events”

• significant changes/hiccups observed by components

• activity tracking



Greg Ganger © August 2006http://www.pdl.cmu.edu/ 5

Activity tracking instrumentation

• Tracks requests along execution path
• trace records logged (at ~200 strategic points)
• < 5-6% overhead on performance and storage space

• Post-processed for data needed
• per-workload, per-resource demands
• per-request flow and latency maps

• Multiple uses
• problem diagnosis, of course
• also for guiding tuning (automatically or otherwise)



Greg Ganger © August 2006http://www.pdl.cmu.edu/ 6

A bit more on approach

• Collect and orchestrate instrumentation
• explicitly reported “events”

• significant changes/hiccups observed by components

• activity tracking
• Statistical tools (e.g., machine learning)

• there are many, with different strengths/weaknesses
• example usages

• sample usage of resource X periodically and mine for 
anomalies in the time series data

• categorize requests according to measured characteristics and 
watch for changes in (1) the set of categories or (2) the 
percentages of requests in each category



Greg Ganger © August 2006http://www.pdl.cmu.edu/ 7

Primary - Free Memory

0

100000000

200000000

300000000

400000000

500000000

600000000

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217

Seconds

M
em

or
y 

in
 B

yt
es

Primary - Fault Free
Primary - Memory Leak

Backup - Free Memory

470000000

472000000

474000000

476000000

478000000

480000000

482000000

484000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211

Seconds

M
em

or
y 

in
 B

yt
es

Backup - Fault Free
Backup - Memory Leak

Fault
Injected

Primary 
Crashes

Prediction
(40s before

failure)

No Failure 
predicted!

Primary
Crashes

Fault
Injected

One “simple” example



Greg Ganger © August 2006http://www.pdl.cmu.edu/ 8

Summary
• End goal: self-healing (autonomics; Self-* Storage)

• automatically detect, diagnose, and repair problems
• or, better, replace “detect” with “predict” and be proactive

• Least understood aspect: the “diagnose” step
• need deep instrumentation
• automatically identify failed components (to repair)
• automatically identify root causes (to prevent recurrences)

• Some key sub-questions
• trade-off between instrumentation detail and accuracy
• pros/cons of different algorithms for different problems



For more information:
http://www.pdl.cmu.edu/

Greg.Ganger@cmu.edu
Director, Parallel Data Lab


